<<GotoNote  
20px wiki letter w cropped.svg
Mechanoreceptor - Wikipedia

A mechanoreceptor is a sensory receptor that responds to mechanical pressure or distortion. Normally there are four main types in glabrous, or hairless, mammalian skin: lamellar corpuscles, tactile corpuscles, Merkel nerve endings, and bulbous corpuscles. There are also mechanoreceptors in hairy skin, and the hair cells in thoreceptors of primates like rhesus monkeys and other mammals are similar to those of humans and also studied even in early 20th century anatomically and neurophysiologically.[1]

Invertebrate mechanoreceptors include campaniform sensilla and slit sensilla, among others.

In somatosensory transduction, the afferent neurons transmit messages through synapses in the dorsal column nuclei, where second-order neurons send the signal to the thalamus and synapse with third-order neurons in the ventrobasal complex. The third-order neurons then send the signal to the somatosensory cortex.

More recent work has expanded the role of the cutaneous mechanoreceptors for feedback in fine motor control.[2] Single action potentials from Meissner's corpuscle, Pacinian corpuscle and Ruffini ending afferents are directly linked to muscle activation, whereas Merkel cell-neurite complex activation does not trigger muscle activity.[3]

In glabrous (hairless) skin, there are four principal types of mechanoreceptors, each shaped according to its function. The tactile corpuscles (also known as Meissner corpuscles) respond to light touch, and adapt rapidly to changes in texture (vibrations around 50 Hz). The bulbous corpuscles (also known as Ruffini endings) detect tension deep in the skin and fascia. The Merkel nerve endings (also known as Merkel discs) detect sustained pressure. The lamellar corpuscles (also known as Pacinian corpuscles) in the skin and fascia detect rapid vibrations (of about 200–300 Hz).

...
https://en.wikipedia.org/wiki/Mechanoreceptor